Control Method of Impedance Network in SiC Power Converters for HEV/EV
نویسندگان
چکیده
Silicon carbide (SiC) devices provide significant performance improvements in many aspects, including lower power dissipation, higher operating temperatures, and faster switching, compared to conventional Si devices. All these features helped increase the interest in the applications of these devices for electric drive systems. The inclusion of an impedance network to elevate DC voltage would improve performance of an electric-traction system, because the topologies of impedances networks can eliminate the need of a DC-DC converter. However, it is important to know control methods that applicable to this type of topologies to systems that are more efficient. This paper presents the analysis of a control method in a power converter topology using SiC devices with an impedance network to elevate DC voltage for electric traction applications. The proposed analisys includes the implementation of a control method in Current Fed Quasi-Z topology, with 100 kHz switching frequency, and its analysis using the simulation of the control method, the power losses in SiC devices and the stress on passive components in the impedance network. Finally, the obtained results are compared with a conventional Current Fed Quasi-Z topology built with silicon devices at a low switching frequency (2 KHz).
منابع مشابه
A Novel Method for Modeling and Simulation of Asymmetrical Impedance-source Converters
Z-Source converter or impedance-source converter is a kind of power converters, which has the responsibility to convert the direct current to alternative current. This converter with respect to its circuit diagram acts as a buck-boost converter except it doesn’t use from DC-DC converter bridge. Γ-source inverters are one of the conventional converters based on impedance-sources; which have been...
متن کاملA Repetitive Control- based Approach for Power Sharing among Boost Converters in DC Microgrids
In this paper a repetitive control (RC) approach to improve current sharing between parallel-connected boost converters in DC microgrids is presented. The impact of changes in line impedance on current sharing is investigated. A repetitive controller is designed and connected in series with current controller of the boost converters to control the switching signals such that by regulating of th...
متن کاملPassivity-Based Control of the DC-DC Buck Converters in High-Power Applications
In this paper, a novel approach for control of the DC-DC buck converter in high-power and low-voltage applications is proposed. Designed method is developed according to passivity based controller which is able to stabilize output voltage in a wide range of operation. It is clear that in high-power applications, parasitic elements of the converter may become comparable with load value and hence...
متن کاملConduction and Dead-Time Voltage Drops Estimation of Asymmetric Cascaded H-Bridge Converters Utilizing Level-Shifted PWM Scheme
Linear AC power supplies can be replaced by their nonlinear switching counterparts due to the lower voltage drops and higher efficiency and power density of switching-mode inverters. Multilevel cascaded H-bridge (CHB) converters are the preferred inverter structure because of modular configuration, control, and protection. The output voltage quality in CHB converters depends on the number of ou...
متن کاملCree Silicon Carbide Power White Paper: Highly Efficient, and Compact ZVS Resonant Full Bridge Converter Using 1200V SiC MOSFETs
Rev. Abstract The most recent version (C2MTM) of Silicon Carbide (SiC) devices is used in a Zero Voltage Switching (ZVS) converter application. A 1200V, 160mohm SiC MOSFET from Cree Inc. is used to design a high-frequency ZVS LLC resonant fullbridge (FB) DC/DC converter. With the outstanding advantages of SiC MOSFET, which has lower junction capacitance and low-on-state resistor compared to a s...
متن کامل